14 research outputs found

    Marginally Trapped Surfaces and AdS/CFT

    Full text link
    It has been proposed that the areas of marginally trapped or anti-trapped surfaces (also known as leaves of holographic screens) may encode some notion of entropy. To connect this to AdS/CFT, we study the case of marginally trapped surfaces anchored to an AdS boundary. We establish that such boundary-anchored leaves lie between the causal and extremal surfaces defined by the anchor and that they have area bounded below by that of the minimal extremal surface. This suggests that the area of any leaf represents a coarse-grained von Neumann entropy for the associated region of the dual CFT. We further demonstrate that the leading area-divergence of a boundary-anchored marginally trapped surface agrees with that for the associated extremal surface, though subleading divergences generally differ. Finally, we generalize an argument of Bousso and Engelhardt to show that holographic screens with all leaves anchored to the same boundary set have leaf-areas that increase monotonically along the screen, and we describe a construction through which this monotonicity can take the more standard form of requiring entropy to increase with boundary time. This construction is related to what one might call future causal holographic information, which in such cases also provides an upper bound on the area of the associated leaves.Comment: 23 pages, 5 figure

    A perturbative perspective on self-supporting wormholes

    Get PDF
    We describe a class of wormholes that generically become traversable after incorporating gravitational back-reaction from linear quantum fields satisfying appropriate (periodic or anti-periodic) boundary conditions around a non-contractible cycle, but with natural boundary conditions at infinity (i.e., without additional boundary interactions). The class includes both asymptotically flat and asymptotically AdS examples. Simple asymptotically AdS3_3 or asymptotically AdS3×S1_3 \times S^1 examples with a single periodic scalar field are then studied in detail. When the examples admit a smooth extremal limit, our perturbative analysis indicates the back-reacted wormhole remains traversable at later and later times as this limit is approached. This suggests that a fully non-perturbative treatment would find a self-supporting eternal traversable wormhole. While the general case remains to be analyzed in detail, the likely relation of the above effect to other known instabilities of extreme black holes may make the construction of eternal traversable wormholes more straightforward than previously expected.Comment: Minor corrections (including fixing a factor of 2 in several formulas/plots

    Traversable asymptotically flat wormholes with short transit times

    Get PDF
    We construct traversable wormholes by starting with simple four-dimensional classical solutions respecting the null energy condition and containing a pair of oppositely charged black holes connected by a non-traversable wormhole. We then consider the perturbative back-reaction of bulk quantum fields in Hartle-Hawking states. Our geometries have zero cosmological constant and are asymptotically flat except for a cosmic string stretching to infinity that is used to hold the black holes apart. Another cosmic string wraps the non-contractible cycle through the wormhole, and its quantum fluctuations provide the negative energy needed for traversability. Our setting is closely related to the non-perturbative construction of Maldacena, Milekhin, and Popov (MMP), but the analysis is complementary. In particular, we consider cases where back-reaction slows, but fails to halt, the collapse of the wormhole interior, so that the wormhole is traversable only at sufficiently early times. For non-extremal backgrounds, we find the integrated null energy along the horizon of the classical background to be exponentially small, and thus traversability to be exponentially fragile. Nevertheless, if there are no larger perturbations, and for appropriately timed signals, a wormhole with mouths separated by a distance dd becomes traversable with a minimum transit time tmin transit=d+logst_{\text{min transit}} = d + \text{logs}. Thus tmin transitd\frac{t_{\text{min transit}}}{d} is smaller than for the eternally traversable MMP wormholes by more than a factor of 2, and approaches the value that, at least in higher dimensions, would be the theoretical minimum. For contrast we also briefly consider a `cosmological wormhole' solution where the back-reaction has the opposite sign, so that negative energy from quantum fields makes the wormhole harder to traverse

    Triplet lifetime in gaseous argon

    Get PDF
    MiniCLEAN is a single-phase liquid argon dark matter experiment. During the initial cooling phase, impurities within the cold gas (<<140 K) were monitored by measuring the scintillation light triplet lifetime, and ultimately a triplet lifetime of 3.480 ±\pm 0.001 (stat.) ±\pm 0.064 (sys.) μ\mus was obtained, indicating ultra-pure argon. This is the longest argon triplet time constant ever reported. The effect of quenching of separate components of the scintillation light is also investigated

    Radial cutoffs and holographic entanglement

    No full text
    corecore